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ABSTRACT
Species	 distribution	 models	 (SDMs)	 are	 commonly	 used	 to	 assess	 potential	 climate	
change	impacts	on	biodiversity,	but	several	critical	methodological	decisions	are	often	
made	arbitrarily.	We	compare	variability	arising	from	these	decisions	to	the	uncertainty	
in	future	climate	change	itself.	We	also	test	whether	certain	choices	offer	improved	skill	
for	extrapolating	to	a	changed	climate	and	whether	internal	cross-	validation	skill	indi-
cates	extrapolative	skill.	We	compared	projected	vulnerability	for	29	wetland-	dependent	
bird	species	breeding	in	the	climatically	dynamic	Prairie	Pothole	Region,	USA.	For	each	
species	we	built	1,080	SDMs	to	represent	a	unique	combination	of:	future	climate,	class	
of	climate	covariates,	collinearity	level,	and	thresholding	procedure.	We	examined	the	
variation	 in	 projected	 vulnerability	 attributed	 to	 each	 uncertainty	 source.	 To	 assess	
	extrapolation	skill	under	a	changed	climate,	we	compared	model	predictions	with	obser-
vations	from	historic	drought	years.	Uncertainty	in	projected	vulnerability	was	substan-
tial,	and	the	largest	source	was	that	of	future	climate	change.	Large	uncertainty	was	also	
attributed	 to	 climate	 covariate	 class	with	 hydrological	 covariates	 projecting	 half	 the	
range	loss	of	bioclimatic	covariates	or	other	summaries	of	temperature	and	precipita-
tion.	We	found	that	choices	based	on	performance	in	cross-	validation	improved	skill	in	
extrapolation.	Qualitative	rankings	were	also	highly	uncertain.	Given	uncertainty	in	pro-
jected	vulnerability	and	resulting	uncertainty	in	rankings	used	for	conservation	prioriti-
zation,	a	number	of	considerations	appear	critical	for	using	bioclimatic	SDMs	to	inform	
climate	change	mitigation	strategies.	Our	results	emphasize	explicitly	selecting	climate	
summaries	that	most	closely	represent	processes	likely	to	underlie	ecological	response	
to	climate	change.	For	example,	hydrological	covariates	projected	substantially	reduced	
vulnerability,	highlighting	the	importance	of	considering	whether	water	availability	may	
be	a	more	proximal	driver	than	precipitation.	However,	because	cross-	validation	results	
were	 correlated	 with	 extrapolation	 results,	 the	 use	 of	 cross-	validation	 performance	
metrics	to	guide	modeling	choices	where	knowledge	is	limited	was	supported.
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1  | INTRODUCTION

Bioclimatic	 species	 distribution	 models	 (SDMs)	 are	 useful	 tools	 for	
assessing	the	potential	impacts	of	climate	change	on	biological	diver-
sity	(Barbet-	Massin,	Walther,	Thuiller,	Rahbek,	&	Jiguet,	2009;	Lawler	
et	al.,	2009;	Thuiller,	Lavorel,	Araujo,	Sykes,	&	Prentice,	2005).	These	
models	 relate	 species	 location	 data	 to	 climate	 covariates	 to	 derive	
probabilities	of	occurrence	over	a	range	of	climatic	conditions.	When	
applied	 to	 future	 climate	 scenarios,	 the	 degree	 of	 any	 overall	 con-
traction	 in	projected	species’	distributions	can	be	used	to	 indicate	a	
species’	vulnerability	to	future	climate-	mediated	population	declines	
(Dawson,	 Jackson,	 House,	 Prentice,	 &	 Mace,	 2011;	 Glick,	 Stein,	 &	
Edelson,	2011).	Various	methodological	decisions	are	an	inherent	part	
of	model	development	and	some	have	been	shown	to	produce	large	
uncertainty,	often	exceeding	the	uncertainty	in	future	climate	change	
itself	 (Buisson,	 Thuiller,	 Casajus,	 Lek,	 &	 Grenouillet,	 2010;	 Garcia,	
Burgess,	Cabeza,	Rahbek,	&	Araujo,	 2012;	 Synes	&	Osborne,	 2011;	
Thuiller,	2004).	Understanding	the	relative	importance	of	different	un-
certainty	sources—and	how	to	improve	model	performance—can	help	
guide	allocation	of	effort	 in	sensitivity	analyzes	and	 improve	projec-
tions	of	species’	vulnerability	to	climate	change.

Attention	to	methodological	decisions	has	often	focused	on	com-
parisons	 of	 statistical	 models	 (e.g.,	 Heikkinen	 et	al.,	 2006),	 a	 deci-
sion	now	often	supplanted	by	the	use	of	statistical	model	ensembles	
(Araujo,	Whittaker,	Ladle,	&	Erhard,	2005).	Some	attention	has	been	
directed	 toward	 the	 selection	 of	 climate	 covariates	 (Gaston,	 2003;	
Pliscoff,	Luebert,	Hilger,	&	Guisan,	2014;	Synes	&	Osborne,	2011),	but	
many	studies	are	nevertheless	based	on	a	small	set	of	easily	accessible	
and	generic	climate	variables	(e.g.,	bioclim	variables	from	the	Worldclim	
dataset;	Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005).	Recent	work	
has	highlighted	decisions	regarding	temporal	scale	and	type	of	climate	
variable	summaries	(van	de	Pol	et	al.,	2016),	but	there	remains	a	broad	
need	for	comparison	among	classes	of	climate	variables,	including	hy-
drological	variables	that	integrate	the	effects	of	temperature	and	pre-
cipitation	to	assess	the	impacts	of	climate	change	on	water	availability	
(Austin,	 2007).	 Furthermore,	 when	 selecting	 variables,	 researchers	
must	decide	on	the	appropriate	tolerance	for	collinearity.	While	a	com-
mon	practice	is	to	limit	collinearity	and	thus	limit	the	potential	for	over-
fitting	(Beaumont,	Hughes,	&	Poulsen,	2005;	Dormann	et	al.,	2013),	it	
has	also	been	suggested	that	changes	 in	future	covariance	structure	
and	the	potential	for	selecting	a	noncausal	variable	may	favor	retaining	
collinear	covariates	(Braunisch	et	al.,	2013).	Assessing	whether	perfor-
mance	in	cross-	validation	is	indicative	of	performance	in	extrapolation	
(i.e.,	in	new	times,	places,	or	conditions)	is	a	key	step	for	guiding	these	
choices,	and	has	not	been	widely	explored	for	these	nor	for	additional	
decisions	such	as	the	method	used	to	threshold	continuous	model	pre-
dictions	to	create	binary	maps	of	species	distributions.	Comparing	the	
magnitude	of	uncertainty	deriving	from	methodological	choices	to	the	
magnitude	of	uncertainty	deriving	from	variability	in	projections	of	fu-
ture	climate	can	provide	researchers	with	a	guide	for	how	to	allocate	
modeling	effort—that	is	whether	greater	consideration	should	be	given	
to	capturing	the	uncertainty	in	future	climate	or	the	uncertainty	due	to	
methodological	choices.

We	evaluated	the	uncertainty	in	projections	of	climate-	driven	dis-
tributional	 changes	 arising	 from	 different	methodological	 decisions,	
and	evaluated	whether	cross-	validation	led	to	selection	of	the	choices	
that	 maximized	 performance	 during	 pronounced	 historical	 drought	
periods,	a	proxy	for	future	climate	change.	We	focused	on	wetland-	
dependent	birds	breeding	 in	 the	Prairie	Potholes	of	North	America,	
a	 climatically	 dynamic	 landscape	where	 climate	 change	may	 reduce	
the	abundance	and	productivity	of	wetlands	that	provide	critical	hab-
itat	 for	wetland-	dependent	 species	 (Johnson	et	al.,	 2010;	 Sorenson,	
Goldberg,	 Root,	 &	Anderson,	 1998;	 Steen,	 Skagen,	 &	Noon,	 2014).	
The	distribution	of	migratory	birds	 is	 reflective	of	 the	current	year’s	
wetland	conditions	(Fletcher	&	Koford,	2004;	Johnson	&	Grier,	1988;	
Niemuth	&	Solberg,	 2003;	 Smith,	 1970),	 allowing	 for	 inference	 into	
climatic	effects	on	avian	occurrence	patterns.	We	used	SDMs	trained	
on	normal	and	wet	climatic	conditions	and	predicted	occurrence	under	
drought	to	evaluate	model	performance	when	projecting	to	a	climati-
cally	nonstationary	period;	future	climate	projections	point	to	increas-
ing	summer	drought	in	this	system	(Ballard	et	al.,	2014).	We	address	
the	following	questions:

(1) What	is	the	amount	of	uncertainty	in	projections	of	range	change	
attributable	 to	 a)	 GCM;	 b)	 climate	 covariate	 class;	 c)	 degree	 of	
collinearity;	 and	 d)	 thresholding	 procedure?

(2) How	is	the	amount	of	projected	range	change	affected	by	choices	
of	a)	GCM;	b)	climate	covariate	class;	c)	degree	of	collinearity;	and	
d)	thresholding	procedure?

(3) Which	choices	provide	the	best	ability	to	extrapolate	to	a	drought	
period?	 Are	 the	 same	 choices	 recommended	 based	 on	
cross-validation?

2  | METHODS

2.1 | Study system and data sources

The	Prairie	Pothole	Region	(PPR)	is	an	extensive	freshwater		wetland	
ecoregion	in	North	America	that	hosts	numerous	breeding	wetland-	
dependent	 bird	 species,	 including	 waterfowl	 species	 that	 have	
made	 the	 region	 a	 focus	 for	 conservation	 and	 management	 ef-
forts	(Doherty,	Ryba,	Stemler,	Niemuth,	&	Meeks,	2013;	Ringelman	
et	al.,	2005;	Steen,	Skagen,	&	Melcher,	2016).	This	region	 is	char-
acterized	 by	 high	 climatic	 variability	 across	 years,	 and	 periods	 of	
drought	or	excessive	precipitation	may	extend	over	multiyear	peri-
ods.	We	obtained	species	occurrence	(presence	and	absence)	data	
from	the	North	American	Breeding	Bird	Survey	 (BBS;	Sauer	et	al.,	
2011)	for	our	focal	species	for	the	U.S.	portion	of	the	PPR	in	North	
Dakota,	South	Dakota,	and	Minnesota	(See	Fig.	S1	and	Table	S1	in	
Supporting	Information).	We	included	land	cover	covariates	to	as-
sociate	with	BBS	routes	that	described	wetland	and	upland	cover-
ages.	We	estimated	models	based	on	observed	climatic	conditions	
(Maurer,	Brekke,	Pruitt,	&	Duffy,	2007).	To	assess	climate	change	
impacts	we	compared	future	distributions	under	forecasted	climate	
to	 distributions	 under	 simulated	 past	 climate	 (“hindcast”),	 an	 ap-
proach	that	avoids	conflating	climate	model	biases	with	the	impacts	
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of	climate	change	(Sofaer	et	al.,	2017).	Climate	forecasts	and	hind-
casts	 were	 obtained	 from	 10	 randomly	 selected	 CMIP5	 GCMs	
under	 Representative	 Concentration	 Pathway	 8.5	 (See	 Fig.	 S2	 in	
Supporting	 Information).	 Hydrological	 data	 were	 output	 from	 a	
macroscale	hydrologic	model	(Liang,	Lettenmaier,	Wood,	&	Burges,	
1994).	 Additional	 information	 on	 the	 Prairie	 Pothole	 ecosystem,	
the	study	area,	and	BBS,	land	cover	and	climate	data	sources	are	in	
Appendix	S1	in	Supporting	Information.

2.2 | Climate covariate hypotheses

We	devised	three	classes	of	climate	covariate	which	can	be	consid-
ered	working	hypotheses	for	how	climate	explains	organismal	distri-
bution:	 temporal,	 bioclimatic,	 and	hydrological.	 Temporal	 covariates	
are	based	on	simple	summaries	of	monthly	precipitation	and	tempera-
ture	data.	We	propose	the	temporal	hypothesis	as	a	general	hypoth-
esis	that	precipitation	and	temperature	drive	organismal	distribution	
via	multiple	temporal	scales	and	the	variability	therein	and	can	include	
monthly,	seasonal,	annual,	or	 longer	term	summaries	and	variability.	
The	 bioclimatic	 hypothesis	 proposes	 that	 organismal	 distribution	 is	
primarily	described	by	monthly	or	quarterly	extremes	and	seasonal-
ity	 of	 temperature	 and	 precipitation.	 The	 original	 set	 of	 bioclimatic	
covariates	was	developed	to	describe	process-	based	climatic	relation-
ships	with	plant	growth	(Booth,	Nix,	Busby,	&	Hutchinson,	2014),	but	
bioclimatic	covariates	now	are	widely	used	to	describe	the	distribu-
tion	of	 animal	 species	 as	well	 (e.g.,	 Elith,	Kearney,	&	Phillips,	 2010;	
Green	 et	al.,	 2008;	 Gregory	 et	al.,	 2009;	 Jimenez-	Valverde	 et	al.,	
2011;	 Lawler,	White,	 Neilson,	 &	 Blaustein,	 2006).	We	 propose	 the	
hydrological	hypothesis	as	a	hypothesis	 that	organismal	distribution	
is	primarily	limited	by	water	availability.	Because	precipitation	is	not	
a	 reliable	 representation	 of	 water	 availability	 and	 many	 ecological	
processes	are	water	limited,	hydrological	variables	may	more	directly	
relate	to	ecological	 response	 (McEvoy	et	al.,	2016).	Drought	 indices	
or	soil	moisture,	for	example,	have	been	explored	by	some	research-
ers	 (Barbet-	Massin	&	 Jetz,	 2014;	Crimmins,	Dobrowski,	Greenberg,	
Abatzoglou,	 &	 Mynsberge,	 2011;	 Konar,	 Todd,	 Muneepeerakul,	
Rinaldo,	&	Rodriguez-	Iturbe,	2013;	Schlaepfer,	Lauenroth,	&	Bradford,	
2012),	but	they	are	not	widely	used.

We	developed	candidate	covariate	sets	for	each	of	the	three	climate	
hypotheses	 based	 on	 previous	 bird	 and	 PPR	 studies	 (See	Appendix	
S1	and	Table	S2	in	Supporting	Information).	Candidate	covariates	for	
each	of	the	three	hypotheses	were	reduced	in	number	based	on	their	
degree	of	collinearity	as	assessed	by	variance	 inflation	factors	 (VIFs;	
Table	S2).	The	first	VIF	cutoff	was	set	at	the	commonly	recommended	
value	of	ten,	and	the	second	was	set	at	two,	using	a	more	stringent	
recommendation	for	ecological	studies	(Kutner,	Nachtsheim,	&	Neter,	
2004;	Zuur,	Ieno,	&	Elphick,	2010).

2.3 | Models and vulnerability assessment

We	 fit	 occurrence	 data	 for	 29	 wetland-	dependent	 bird	 species	
using	 the	 ensemble	 modeling	 platform,	 BIOMOD,	 implemented	 in	
the	R	package	Biomod2	(Version	3.3-	7;	Thuiller,	Lafourcade,	Engler,	

&	 Araujo,	 2009).	We	 developed	 consensus	 predictions	 based	 on	 a	
weighted	probability	of	occurrence	across	seven	modeling	algorithms.	
To	threshold	continuous	probabilities	 into	binary	occurrence	values,	
we	used	a	comprehensive	12	thresholding	procedures.	To	assess	cli-
mate	change	vulnerability,	we	calculated	the	commonly	used	Range	
Change	 Index	 (RCI;	Thuiller	et	al.,	2005;	Buisson	et	al.,	2010;	Synes	
&	Osborne,	2011;	Fordham,	Akcakaya,	Araujo,	Keith,	&	Brook,	2013).	
Additional	 information	 on	 the	 SDMs,	 the	 thresholding	 procedures,	
and	RCI	is	in	Appendix	S1	in	Supporting	Information.

2.3.1 | Attributing uncertainty in range change 
projections

Using	a	factorial	design	to	evaluate	key	sources	of	uncertainty	in	SDM	
development,	we	 evaluated	 all	 possible	 combinations	 of	 uncertainty	
from	10	GCMs,	three	covariate	hypotheses,	three	cut-	offs	for	collin-
earity,	and	12	thresholding	procedures	(Figure	1).	The	result	was	1,080	
sets	of	RCI	projections	per	 species.	We	applied	 a	GLM	with	normal	
error	distribution	 to	 log-	transformed	RCI	output	 for	 each	 species	 to	
evaluate	 the	 relative	 contribution	 to	 estimated	 range	 change	 arising	
from	GCM	selection,	covariate	hypothesis,	degree	of	collinearity,	and	
thresholding	 procedure.	 We	 alternately	 withheld	 each	 uncertainty	
source	to	assess	the	proportional	reduction	in	model	deviance	attrib-
utable	to	its	inclusion	as	a	model	covariate	(Buisson	et	al.,	2010).	For	
example,	 the	proportion	of	deviance	explained	by	GCM,	 for	 a	 given	
species,	 was	 calculated	 as	 the	 difference	 between	 the	 deviance	 re-
maining	in	the	model	without	GCM	and	the	deviance	remaining	in	the	
model	with	all	uncertainty	sources.	This	difference	was	then	divided	
by	the	null	(intercept	only)	model	deviance.	We	then	summarized	the	
distribution	of	deviance	reduction	values	across	species	for	each	un-
certainty	source.

2.3.2 | Effects of modeling decisions on amount of 
projected range change

We	assessed	the	effects	of	decisions	regarding	the	covariate	hypoth-
esis,	degree	of	collinearity,	and	thresholding	procedure	on	estimates	of	
range	change	using	generalized	linear	mixed	models	(GLMMs;	Figure	1).	
In	these	models,	we	treated	species	as	a	random	effect	and	assumed	
RCI	to	be	a	 log	normally	distributed	response	variable.	GLMMs	were	
created	using	the	R	package	lme4	(Bates,	Machler,	Bolker,	&	Walker,	
2015;	R	Development	Core	Team,	2012).	We	set	reference	 levels	to	
those	that	predicted	the	smallest	RCI.	To	qualify	the	degree	of	change	
to	 RCI	 estimates	 produced	 by	 the	 alternate	 decisions	 compared	 to	
choosing	 the	 reference	 level,	we	describe	 “none,”	 “low,”	 “moderate,”	
“high,”	or	“very	high”	reflecting	coefficient	estimates	of	0,	<0	to	−0.2,	
<−0.2	to	−0.4,	<−0.4	to	−0.6,	and	<−0.6	to	−0.8,	respectively.

2.3.3 | Effects of modeling decisions on model 
performance when extrapolating

To	create	independent	test	data	to	serve	as	a	proxy	for	future	climate	
change,	we	partitioned	drought	years	from	the	years	representing	wet	



8844  |     STEEN ET al.

and	 normal	 conditions	 (Figure	1).	 We	 defined	 seven	 drought	 years:	
1988–1992	and	2004–2005.	The	years	1988–1992	cover	a	drought	
considered	 second	 in	 severity	 only	 to	 the	 dust	 bowl	 drought	 of	 the	
1930’s	and	resulted	in	a	greatly	reduced	number	of	wetlands	including	
the	loss	of	some	lakes	(Niemuth,	Wangler,	&	Reynolds,	2010;	Winter	
&	Rosenberry,	1998).	During	the	2004–2005	drought	years,	lakes	re-
mained	largely	unaffected	but	the	number	of	temporary	and	seasonal	
wetlands	were	reduced	to	below	half	their	maximum	number,	and	sizes	
of	 semipermanent	wetlands	were	 reduced	 by	 ~50%	 (Niemuth	 et	al.,	
2010).	 Extrapolation	 model	 performance	 was	 assessed	 using	 mod-
els	trained	with	data	from	the	82%	of	the	data	that	represented	wet/
normal	years	and	projected	to	the	18%	of	 the	data	that	 represented	
drought	years.	Cross-	validation	model	performance	was	assessed	using	
10	 randomized	 splits	 of	 the	wet/normal	 years’	 data	 using	 the	 same	
proportions	 as	 for	 extrapolation	 (82:18).	We	assessed	model	 perfor-
mance	using	Cohen’s	kappa	statistic	(kappa),	True	Skill	Statistic	(TSS),	
Area	 under	 the	 receiver	 operating	 characteristic	 curve	 (AUC),	 and	
prevalence	match	(additional	information	in	Appendix	S1	in	Supporting	
Information).	For	modeling	purposes,	all	metrics	were	logit	transformed,	
and	a	normal	error	distribution	was	assumed	(Warton	&	Hui,	2011).

We	modeled	the	effects	of	the	climate	covariate	hypothesis,	degree	of	
collinearity,	and	thresholding	procedure	on	model	performance	for	each	
performance	metric	(Figure	1).	We	used	GLMMs	with	species	as	a	ran-
dom	effect	(using	lme4).	For	the	climate	covariate	hypothesis	and	thresh-
olding	procedure,	we	selected	reference	levels	for	the	GLMMs	based	on	
those	that	were	intermediate	in	effect,	thus	allowing	other	levels	to	have	
a	positive	or	negative	effect	on	model	performance	relative	to	the	refer-
ence.	Using	model	coefficients,	we	qualified	the	relative	impact	to	model	
performance	in	extrapolation	owing	to	alternate	decisions	relative	to	the	
intermediate	reference	level.	Therefore,	we	describe	“positive,”	“interme-
diate,”	 or	 “negative”	 performance	 impacts	 corresponding	 to	 coefficient	
estimates	that	were	positive,	nonsignificant,	or	negative,	respectively.

To	evaluate	 the	 ability	 of	 choices	 based	on	higher	 performance	 in	
cross-	validation	tests	to	improve	performance	for	extrapolation	as	well,	
we	assessed	the	correlation	between	cross-	validation	and	extrapolation	
results	for	each	performance	metric.	For	each	metric,	we	used	GLMMs	to	
predict	the	extrapolation	performance	value	using	a	fixed	effect	of	cross-	
validation	performance	value	and	a	random	effect	of	species.	We	then	
assessed	the	correlation	between	the	prediction	and	the	actual	extrap-
olation	performance	value	using	Spearman’s	rank-	based	correlation	(ρ).

F IGURE  1 Representation	of	workflow	starting	with	creating	nine	species	distribution	models	(SDMs)	by	training	with	each	of	nine	covariate	
sets	using	the	Biomod	ensemble	and	then	conducting	a	range change analysis	by	projecting	to	future	climate	(general	circulation	model	data;	
GCM)	or	conducting	a	model performance analysis	by	predicting	to	testing	data.	The	range	change	analysis	involved	projections	of	each	SDM	to	
10	GCMs	to	obtain	future	probabilities	of	occurrence,	then	thresholding	each	projection	12	different	ways	to	obtain	occurrence	(0/1)	values,	
then	calculating	range	change	(range	change	index;	RCI)	based	on	the	difference	between	future	versus	hindcast	occurrence	(not	shown).	The	
model	performance	analysis	involved	predictions	of	each	SDM	to	subsets	of	historical	climate	data	based	on	(a)	extrapolation	data	split	or	(b)	
cross-	validation	(CV)	data	splits	to	obtain	historic	probabilities	of	occurrence,	then	thresholding	each	prediction	12	different	ways	to	obtain	
occurrence	values,	and	then	assessing	model	performance	based	on	predicted	versus	actual	occurrence.	We	used	the	two	types	of	analyses	to	
address	three	questions:	(1)	how	much	uncertainty	is	attributable	to	each	uncertainty	source	(GCM,	hypothesis,	collinearity,	and	threshold)?	
(2)	what	is	the	effect	of	each	decision	on	amount	of	projected	range	change?;	and	(3)	what	is	the	effect	of	modeling	decisions	on	model	
performance	in	extrapolation	and	compared	to	CV?	For	objectives	1	and	2,	with	1,080	(3	×	3	×	10	×	12)	projections	per	species,	we	(1)	modeled	
deviance	in	RCI	explained	by	each	uncertainty	source,	and,	(2)	modeled	the	contributions	to	RCI	for	the	28	(3	+	3	+	10	+	12)	decisions.	For	the	
108	(3	×	3	×	12)	historical	predictions	per	species,	we	modeled	the	relationship	across	the	18	(3	+	3	+	12)	decisions	with	model	performance	in	
extrapolation	(3a)	and	cross-	validation	(3b)
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We	assessed	influential	species	as	diagnosed	by	the	relative	vari-
ance	 change	measure	 in	 the	 R	 package	HLMdiag	 by	 alternately	 re-
moving	each	species	and	observing	whether	interpretation	of	model	
results	changed	(Dillane,	2006).	However,	because	their	removal	did	
not	impact	the	interpretation	of	the	results,	we	retained	them	(for	the	
list	of	influential	species,	see	Appendix	S1	in	Supporting	Information).

Finally,	we	 plotted	 the	 distribution	 of	 vulnerability	 ranks	 across	
species;	 this	 provides	 a	 measure	 of	 the	 degree	 to	 which	 modeling	
decisions	 affect	 implications	 for	 conservation	 prioritization	 (Wright,	
Hijmans,	Schwartz,	&	Shaffer,	2015).

3  | RESULTS

3.1 | Attributing uncertainty in range change 
projections

Range	change	estimates	were	highly	variable.	Although	median	values	
were	negative	 for	 all	 but	one	 species,	 the	majority	of	 projections	 in-
cluded	both	negative	and	positive	range	change—that	is,	inferences	to	

the	direction	and	amount	of	range	change	depended	critically	on	model-	
building	decisions	(Figures	2	and	3).	Note	that	this	finding	corresponds	
to	the	ensemble-	weighted	projections;	previous	work	has	found	similar	
divergence	in	projected	effect	for	individual	models	(Araujo	et	al.,	2005).	
GCM	selection	contributed	the	most	uncertainty	 followed	by	the	co-
variate	hypothesis	 and	 thresholding	procedure	 (Figure	4).	The	degree	
of	collinearity	retained	in	the	covariate	set	was	a	minor	source	of	un-
certainty.	Vulnerability	rankings	based	on	range	change	estimates	were	
highly	variable	for	most	species	meaning	that	modeling	decisions	quali-
tatively	affect	which	species	are	identified	as	most	vulnerable	(Figure	5).

3.2 | Effects of modeling decisions on amount of 
projected range change

Modeling	 decisions	 were	 associated	 with	 consistently	 more	 or	 less	
range	change.	The	GCM	that	predicted	the	least	range	change	(median	
RCI	=	−0.16)	projected	the	least	warming	and	the	largest	precipitation	
increase	(#	34,	Figs.	S2	and	S3	in	Supporting	Information).	The	GCM	
that	 projected	 the	 greatest	 range	 change	 (median	 RCI	=	−0.55)	 had	

F IGURE  2 Example	comparison	of	differences	in	range	change	for	one	species	(Mallard)	under	two	sets	of	decisions.	Red	pixels	show	
locations	where	species	is	predicted	to	occur;	the	total	red	area	is	the	range	of	the	species;	and	thus,	range	change	is	the	change	in	red	area	
(future	minus	current).	Decision	set	A	is	modeled	using:	hydrological	covariates,	variance	inflation	factor	of	two	to	reduce	collinearity,	kappa	
threshold,	and	General	Circulation	Model	“mri.”	Decision	set	B	is	modeled	using:	bioclimatic	covariates,	all	covariates,	predprevobs	threshold,	
and	General	Circulation	Model	“acc.”	“Current”	is	based	on	General	Circulation	Model	hindcasts	rather	than	observed	climate	data
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near-	zero	change	in	precipitation	and	the	largest	temperature	increase	
(#	1).	The	use	of	bioclimatic	and	temporal	climate	covariates	resulted	
in	moderately	more	projected	range	loss	compared	to	hydrological	co-
variates	(Table	1).	Bioclimatic	covariates	projected	94%,	and	temporal	
covariates	98%	more	median	range	 loss	than	hydrological	covariates	
(Fig.	S4	in	Supporting	Information).	The	difference	projected	between	
bioclimatic	and	temporal	covariates	was	not	statistically	significant	(Fig.	
S5	in	Supporting	Information).	The	impact	of	varying	collinearity	was	
low	with	 the	 highest	 degree	of	 collinearity	 projecting	9%	more	me-
dian	range	loss	relative	to	the	lowest	(Table	1	and	Fig.	S6	in	Supporting	

Information).	The	 impact	of	using	 the	 fixed	 (0.5)	 threshold	was	very	
high	compared	with	those	that	produced	the	 least	change	(observed	
prevalence	and	averaged	predicted	probability)	and	resulted	in	projec-
tions	of	94%	more	median	range	loss	(Table	1	and	Fig.	S7	in	Supporting	
Information).	Numerous	other	thresholds	resulted	in	moderate	or	low	
impacts	to	the	amount	of	projected	range	loss	(Table	1).

3.3 | Effects of modeling decisions on model 
performance when extrapolating

Extrapolation	to	drought	conditions	was	variously	improved	or	dimin-
ished	by	different	modeling	decisions	(Table	1).	Compared	to	the	hy-
drological	hypothesis,	the	temporal	hypothesis	generally	had	a	positive	
impact	on	extrapolation	ability,	while	the	bioclimatic	hypothesis	gener-
ally	had	a	negative	impact.	Higher	collinearity	benefited	extrapolations.	
For	locational	accuracy	and	prevalence	accuracy,	five	thresholding	pro-
cedures	improved	and	three	diminished	projections	compared	with	the	
reference	levels	of	Fmeasure	and	SeSpeql,	respectively.

All	 correlation	 coefficients	 between	predictions	 of	 extrapolation	
performance	 based	 on	 cross-	validation	 performance	 and	 actual	 ex-
trapolation	performance	were	positive	indicating	cross-	validation	per-
formance	measures	provide	value	for	making	modeling	decisions	for	
extrapolating	under	climate	change.	Although	all	positive,	they	varied	
in	strength,	with	ρ	=	0.93	for	AUC,	ρ	=	0.91	for	TSS,	ρ	=	0.86	for	kappa,	
and	ρ	=	0.72	for	prevalence	match.

4  | DISCUSSION

Methodological	 decisions	 in	 projecting	 impacts	 of	 climate	 change	
can	lead	to	widely	divergent	projections	but	are	often	made	without	

F IGURE  3 Variation	in	projected	
range	change	(range	change	index;	RCI)	
to	mid-	century	for	29	wetland-	dependent	
bird	species	based	on	1,080	projections	
per	species.	Boxplots	show	the	median,	
and	first	and	third	quartiles,	with	whiskers	
showing	the	1.5	interquartile	range.	
Variation	stems	from	choices	of	general	
circulation	model	(GCM),	climate	covariate	
hypothesis,	threshold,	and	collinearity.	See	
Table	S1	for	species	abbreviations
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F IGURE  5 Frequency	of	vulnerability	
rankings	for	29	wetland-	dependent	bird	
species	based	on	1,080	projections	per	
species.	Rankings	are	based	on	the	relative	
degree	of	projected	range	change	(range	
change	index;	RCI).	As	expected,	the	two	
species	with	lowest	and	highest	median	
RCI	have	relatively	consistent	vulnerability	
rankings
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TABLE  1 Effects	of	different	decisions	on	projections	of	range	loss	(using	Range	Change	Index;	RCI)	and	model	performance	in	
extrapolation	tests.	Interpretations	presented	in	this	table	are	based	on	model	coefficients	and	confidence	intervals	(Figs.	S5	and	S8).	For	the	
RCI	model,	reference	levels	were	those	that	predicted	the	least	loss,	and	we	report	how	much	more	loss	was	predicted	by	the	alternative	
choices.	For	the	model	performance	results,	reference	levels	were	those	intermediate	in	performance.	“Tendency”	means	that	most,	but	not	all,	
performance	metrics	indicate	this	result.	For	thresholding	decisions,	model	performance	is	divided	into	locational	accuracy	and	prevalence	
accuracy	because	results	generally	differed	by	these	two	sets	of	metrics.	Locational	accuracy	is	represented	only	by	TSS	because	kappa	
generally	did	not	differentiate	among	thresholding	procedures	in	extrapolation,	and	AUC	is	not	based	on	unique	thresholds.	Prevalence	
accuracy	is	represented	by	the	prevalence	match	metric

Decision group Decision
Effects on increased range 
loss Effects on model performance in extrapolation

Climate	covariate	hypothesis Hydrological None	(reference) Intermediate	(tendency;	reference)

Temporal Moderate Positive	(tendency)

Bioclimatic Moderate Negative	(tendency)

Collinearity NA Low	impact	of	increasing 
collinearity

Benefit	to	moderate	(ten	VIF)	or	higher	collinearity	
(tendency)

Thresholding procedure Locational accuracy Prevalence accuracy

ObsPrev None	(reference) Positive Negative

AvgProb None Positive Negative

PRplot	based Low Intermediate Intermediate

ROC Low Positive Intermediate

SeSpeql Low Positive Intermediate	(reference)

TSS Low Positive Negative

Fmeasure Moderate Intermediate	(reference) Positive

Kappa Moderate Intermediate Positive

MidptProb Moderate Negative Positive

OPS Moderate Intermediate Positive

PredPrevObs Moderate Negative Positive

Fixed	(0.5) Very	High Negative Intermediate
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strong	 justification.	 We	 found	 that	 future	 climatic	 conditions	 (i.e.,	
GCM)	were	the	largest	source	of	uncertainty,	but	considerable	varia-
tion	in	projected	changes	in	range	size	also	arose	from	the	climate	co-
variate	hypothesis	and	the	thresholding	procedure.	Projections	based	
on	hydrological	covariates	suggested	reduced	vulnerability	compared	
to	bioclimatic	or	 temporal	covariates.	For	 reliably	projecting	climate	
change	impacts,	the	simplest	climate	covariates	may	be	the	best:	tem-
poral	covariates	outperformed	bioclimatic	covariates	and,	by	a	slim-
mer	 margin,	 hydrological	 covariates.	 Cross-	validation	 performance	
was	correlated	with	extrapolation	performance;	thus,	our	results	sup-
port	using	cross-	validation	performance	to	guide	modeling	decisions	
in	climate	change	impacts	studies.	However,	we	note	that	methodo-
logical	decisions	profoundly	affected	which	species	were	identified	as	
most	vulnerable	(Figure	5).	This	finding	implies	that	sensitivity	analy-
ses	should	remain	a	key	part	of	any	study	aiming	to	inform	manage-
ment	prioritization	decisions	(Wright	et	al.,	2015).

4.1 | Attributing uncertainty in range change 
projections

Whereas	most	other	studies	found	various	methodological	uncertainties	
to	be	larger	than	the	uncertainty	in	climate	change	itself	(Buisson	et	al.,	
2010;	Dormann,	 Purschke,	Marquez,	 Lautenbach,	 &	 Schroder,	 2008;	
Synes	&	Osborne,	2011),	our	study	 lends	evidence	 that	 the	plausible	
range	of	future	climate	itself	is	the	largest	unknown	(see	also	Stralberg	
et	al.,	2015;	Wenger	et	al.,	2013).	There	is	little	agreement	on	metrics	
to	separate	“good”	or	“bad”	GCMs	(Knutti,	Furrer,	Tebaldi,	Cermak,	&	
Meehl,	2010);	thus,	we	followed	precedence	and	recommendations	to	
represent	the	range	of	variation	across	GCMs	(e.g.,	Fisichelli	et	al.,	2016;	
Leppi,	Rinella,	Wilson,	&	Loya,	2014;	Sofaer	et	al.,	2016).

We	observed	substantial	variation	in	projected	future	distributions	
depending	on	which	covariate	hypothesis	was	being	tested.	The	un-
derlying	climate	data	were	the	same	for	all	climate	datasets,	eliminat-
ing	data	 source	 as	 the	 explanation	 for	 this	 result.	Thus,	variation	 in	
range	size	arose	from	the	hypothesized	relationship	between	climate	
and	species	distribution,	and	the	particular	derivations	of	climatic	vari-
ation	 that	 represented	 each	 hypothesis.	 Collectively,	 our	work	 and	
others	(Pliscoff	et	al.,	2014;	Synes	&	Osborne,	2011)	emphasize	that	
sensitivity	to	climatic	covariate	sets	apply	across	geographic	regions	
and	taxonomic	groups.

We	 filtered	 our	 covariate	 sets	 using	 three	 different	 degrees	 of	
collinearity	 and	 found	 relatively	 little	variation	 in	 range	change	pro-
jections.	While	posited	as	a	serious	concern	with	conflicting	recom-
mendations	 for	 best	 practices	when	projecting	 species	 distributions	
(Beaumont	et	al.,	2005;	Braunisch	et	al.,	2013;	Dormann	et	al.,	2013),	
we	found	the	impact	of	this	decision	to	be	relatively	small.	This	may	
reflect	our	approach	which	started	with	a	relatively	 large	number	of	
covariates	(x̅	=	14)	and	ended	in	a	moderate	number	(x̅	=	9),	thus	po-
tentially	maintaining	a	lot	of	redundancy	in	covariate	information,	as	in	
Beaumont	et	al.	(2005).

We	found	that	thresholding	probabilities	of	occurrence	into	pres-
ence–absence	can	generate	almost	as	much	uncertainty	as	the	climate	
hypothesis	 used.	 Serious	 concerns	 about	 the	 uncertainty	 stemming	

from	 choosing	 a	 thresholding	 procedure	 have	 been	 raised	 for	 pre-
dictions	 to	 current	 conditions	 (Freeman	 &	Moisen,	 2008;	 Jimenez-	
Valverde	&	Lobo,	2007;	Liu,	Berry,	Dawson,	&	Pearson,	2005),	so	it	is	
not	surprising	that	this	contributes	substantial	uncertainty	for	future	
projections	as	Nenzen	and	Araujo	(2011)	also	found.

4.2 | Effects of modeling decisions on amount of 
projected range change

We	projected	 range	 change	under	GCMs	 that	 projected	wetter	 fu-
tures	as	well	as	those	that	projected	drier	overall	futures.	Our	results	
suggest	 that	 increasing	precipitation	can	compensate	 for	 range	 loss	
under	modest	temperature	increases,	but	large	increases	in	only	tem-
perature	produced	high	projected	range	loss.

Because	 the	 temporal	 and	bioclimatic	 hypotheses	were	 likely	
more	similar	based	on	how	they	were	computed—based	on	sum-
maries	 and	 derivations	 of	 monthly	 precipitation	 and	 tempera-
ture	 data,	 versus	 an	 additional	 hydrological	 model—perhaps	 it	 is	
not	 surprising	 that	 they	produced	 similar	 levels	of	 range	 change.	
However,	 predictions	 of	 twice	 the	 range	 loss	 of	 the	 hydrologi-
cal	 covariates	 are	 compelling.	 Schlaepfer,	 Lauenroth,	&	Bradford,	
(2012)	 also	 found	 more	 hopeful	 outcomes	 in	 projections	 using	
hydrological	 covariates	 versus	more	 basic	 climatic	 covariates	 for	
future	plant	distributions.	One	 likely	explanation	 for	our	 result	 is	
that	temperature	increases	can	be	tempered	by	corresponding	pre-
cipitation	 increases	 for	ecosystems	and	processes	 that	 are	water	
limited	as	 in	our	study	system,	and	this	effect	would	be	captured	
by	water	balance	formulas	of	a	hydrological	model.

Whereas	 including	more	 covariates	 generally	produces	more	 re-
stricted	predictions	of	ranges	(e.g.,	Beaumont	et	al.,	2005),	the	impacts	
of	collinearity	 in	projections	of	range	change—where	the	measure	 is	
a	difference	in	proportions	of	future	and	current	ranges—have	rarely	
been	 addressed.	 In	 our	 analysis,	 higher	 collinearity	 led	 to	 increases	
in	 range	 loss,	 consistent	with	 the	 expectation	 that	 higher	 collinear-
ity	leads	to	overfit	models	that	are	not	generalizable	to	new	times	or	
places	(Heikkinen,	Marmion,	&	Luoto,	2012).

The	effects	of	thresholding	methods	on	projected	climate	change	
vulnerability	 have	 received	 slim	 attention	 (Nenzen	&	Araujo,	 2011).	
We	 found	 the	 fixed	 threshold	of	0.5	produced	alarming	projections	
of	 range	 loss,	nearly	 twice	that	of	observed	prevalence	and	average	
predicted	probability	procedures,	which	produced	the	most	moderate	
projections	of	range	loss.	The	fixed	0.5	threshold	is	known	to	overesti-
mate	occurrences	of	common	species	and	underestimate	occurrences	
of	rare	species	(Freeman	&	Moisen,	2008;	Jimenez-	Valverde	&	Lobo,	
2007),	and	this	bias	may	cause	the	fixed	threshold	to	produce	extreme	
estimates	 of	 range	 change	 for	 species	 that	 deviate	 from	moderate	
	levels	of	prevalence	as	ours	do.

4.3 | Effects of modeling decisions on model 
performance when extrapolating

Bioclimatic	 covariates	have	a	 strong	 theoretical	 link	 to	niche	mod-
eling,	are	widely	used	for	modeling	climate	change	impacts,	and	are	
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assumed	to	have	numerous	advantages	 (Austin,	2002;	Booth	et	al.,	
2014;	Watling	 et	al.,	 2012);	 however,	 they	 underperformed	 in	 ex-
trapolation	relative	to	temporal	covariates.	The	simpler	summaries	of	
temporal	variation	in	temperature	and	precipitation	could	potentially	
represent	more	variability	in	climate	if	more	months	are	represented	
in	the	ultimate	set.	The	bioclimatic	set	had	fewer	covariates,	but	our	
result	aligns	with	 that	of	Peterson	and	Nakazawa	 (2008),	who	also	
found	 that	bioclimatic	 covariates	underperformed	 relative	 to	other	
climatic	covariates.	They	suggested	that	 the	 indirect	methods	used	
to	estimate	the	bioclimatic	covariates	relative	to	more	direct	use	of	
means	and	summaries	of	other	climate	covariates	may	put	bioclimatic	
variables	at	a	disadvantage.	Bioclimatic	covariates	representing	sea-
sonal	extremes	such	as	 the	“wettest	quarter”	may	 lead	to	errors	 in	
projections	 if	 the	 seasonality	of	 future	climate	changes	 for	 species	
such	as	migratory	birds	with	limited	abilities	to	shift	their	phenology.

While	hydrological	variables	have	the	advantage	of	representing	
water	 balance,	 in	 extrapolation—although	 better	 than	 bioclimatic	
covariates—they	 underperformed	 relative	 to	 temporal	 covariates.	
The	 noise	 introduced	 by	 the	 additional	 model	 required	 to	 derive	
these	 covariates	 could	 conceivably	 diminish	 the	 theorized	 benefit	
to	these	covariates,	and	this	trade-	off	should	be	explored	further.

Recommended	 thresholding	 procedures	 varied	 depending	 on	
whether	locational	accuracy	or	prevalence	accuracy	was	desired,	and	
our	 results	 for	 extrapolation	 generally	 corroborated	 previous	 work	
assessing	performance	of	thresholds	under	a	static	climate.	For	loca-
tional	 accuracy,	 like	 Liu	et	al.	 (2005),	we	 found	 that	 sensitivity-		 and	
specificity-	based	approaches	(ROC,	SeSpeql,	TSS)	as	well	as	average	
probability	 and	 observed	 prevalence	 offered	 improved	 performance	
while	 the	 fixed	 threshold	 produced	 the	 poorest	 performance.	 For	
prevalence	accuracy,	like	Freeman	and	Moisen	(2008),	we	found	kappa	
and	predicted	prevalence	equals	observed	prevalence	 improved	this	
metric,	 and	our	 results	 additionally	 recommend	Fmeasure,	midpoint	
probability,	and	overall	prediction	success.

Positive	correlation	values	between	model	performance	in	cross-	
validation	and	extrapolation	for	all	performance	metrics	(AUC,	kappa,	
prevalence	match,	and	TSS)	indicate	that	cross-	validation	performance	
can	be	used	to	select	best	choices	for	bioclimatic	species	distribution	
modeling.	However,	the	smaller	value	for	prevalence	match	indicates	
lower	reliability	of	this	metric,	or,	alternatively,	the	challenge	of	extrap-
olating	prevalence.	Conversely,	 the	 relatively	high	correlation	values	
for	AUC	and	TSS	indicate	these	metrics	may	be	among	the	better	for	
making	modeling	decisions.

5  | CONCLUSION

Climate	 change	 projections	 of	 range	 change	 should	 be	 guided	 by	 
ecological	 knowledge	 of	 the	 factors	 limiting	 species	 distributions,	
whether	 via	 physiological	 or	 demographic	mechanisms	 or	 via	 habitat	
availability.	These	considerations	can	guide	the	selection	of	climate	co-
variates,	which	should	be	projected	under	a	range	of	plausible	futures.	
For	mid-	century	projections,	GCM	uncertainty	represents	much	of	the	
climate	uncertainty,	but	for	 late-	century	projections,	 it	 is	necessary	to	

include	multiple	emissions	trajectories	as	well	(Snover	et	al.,	2013).	Our	
results	indicate	that	the	thresholding	procedure	should	be	carefully	jus-
tified	or	multiple	methods	considered,	while	collinearity	has	a	relatively	
small	 effect.	 For	decisions	where	ecological	 knowledge	provides	 little	
guidance,	our	results	support	the	use	of	cross-	validation	to	select	meth-
ods	 that	may	 then	be	applied	under	novel	 conditions.	Visualizing	and	
communicating	 the	uncertainty	 arising	 from	divergent	 climate	 futures	
and	 from	 modeling	 methods	 provide	 managers	 and	 other	 end	 users	
with	critical	context	for	decision-	making;	sensitivity	analyses	will	remain	 
critical	 because	 variation	 arising	 from	 modeling	 decisions	 can	 lead	
to	 large	 uncertainties	 regarding	 the	 relative	 vulnerability	 of	 different	 
species	(Figure	5).
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